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OPTIMIZATION OF PROCESS PLANNING PARAMETERS FOR
ROTATIONAL COMPONENTSBY GENETIC ALGORITHMS
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Abdract—In CAPP systems process parameter optimization is one of the key areas for

ressarch and deveopment. Traditiona

techniques have very

limited scope because of the

complexity of the optimization problem. Due to the rapid development of computer technology
Gengtic Algorithms (GAs), which are robust search agorithm, have been found to be suitable and
efficient tools for optimization in such cases. In this work process planning parameters for
machining rotetional components are optimized by a Genetic Algorithm Optimization Toolbox
developed in Matlab environment. Here machining time is conddered as the objective function and
condraints are machine capacity, limits of feed rate, depth of cut, cutting speed etc. Machining
time is minimized through a series of generations while some genetic operators are gpplied a each
generation. The result of the work shows how a complex optimization problem is handle by a

genetic dgorithm and converges very quickly.
Keyword- CAPP, GA, Optimization

INTRODUCTION

Optimization of process planning is one of the
foremost targets of Manufacturing Systems. Numbers
of ressach works ae peformed for generating
optimum process plan. The optimum process plan may
be on the basis of time or cost or on the bass of some
weighted combination of these two. Tool sdection,
machine sdection, process sdection and tool path
sdection, process paameter sdection ae the most
important areas for optimization in process planning.
Process parameter optimization is the find dtage of a
CAPP sysem. Determingtion of optimum parameters is
one of the vita stages of process planning since the
economy of machining operation plays the most
important role in increesng  productivity and
competitiveness. Genetic agorithm is one of the most
efficient tools for optimization of such problems. This
paper presents the application of GA in process
planning parameters optimization.

GA AND OTHER SEARCH ALGORITHMS

Many works have so fa been done to optimize

these parameters by using different optimization
techniques like god programming, multistage dynamic
programming, linear programming, geometric

programming, branch and bound dgorithm etc. But al
of them face great difficulties when the number of
varisbles increases, because the problem  becomes
combinatorially explosve and hence computaiondly
complex [1]. Different researchers used different
techniques to optimize process parameters but al of
those techniques have their own limitations.
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Direct search methods include function evauation
and comparisons only. Gradient search methods need
vaues of function and its denivatives, and ther
computerizations are dso problematic. They are more
difficult than the direct search methods, but they can
yield more accurate for some computationa efforts.

Derivdive-based mathematicd  optimizations  are
not managesble for optimizing functions of discrete
vaiables. Dynamic programming that may be agpplied
to problems whose solution involves a multistage
decison process, can handle both continuous and
discrete variables. Contrary to many other optimization
methods it can yidd a globd optimum solution.
However if the optimization problem involves a lage
number of independent parameters with a wide range of
vaues (as in the case of optimization of cutting
paameters), the use of dynamic programming is
limited. As the numbers of varidbles and congtraints
increases, the optimum has a tendency to grow flatter
with less probability that the redlizable optimum will be
a mahematicd optimum, and hence computationd
effort increases considerably.

Geometric  programming is a useful method that
can be used for solving nonlinear problems subject to
nonliner condraints, especidly if the objective
function to be optimized is a polynomia with fractional
and negative exponents, while the condraints may be
incorporated in the solution techniques. It is more
poweful  than other  mahematicd  optimization
techniques when the problem is restricted by one or two
condraints. However if the degree of difficulty
increases, the formulaed problem might be more
complicated than the origind problem. Geometric
programming can only handle continuous variables.

227



ICME 2001, Dhaka, December 26-28

The solution to the optimization problems, which
includes red vaue variables, can be obtaned usng
numerous methods. There is no efficient dl-purpose
optimization method avaladle for nonlinesr
programming  problems  like  process  parameter
optimization. The computational time and cost involved
in the determination of optima parameters commonly
depends on the complexity or smplicity of the model.
Some modds can produce accurate solutions by making
rigorous computation, which is not economic in terms
of computation time and cost. Sometimes the solution
from these modds may not be optimd. Some other
models may develop solutions far from the optimum in
a fat manner. Therefore a compromise between the
high accuracy of a rigorous solution and low accuracy
of an overamplified solution should be made.

Gendtic  Algorithms  (GAs) ae robust search
dgorithms that are based on the mechanics of naurd
sdection and naturd genetics They combine the idea
of "survivd of the fitte" with some of the mechanics
of genetics to form a highly effective search dgorithm.
Genetic dgorithms belong to a cdass of sochadtic

optimization ~ techniques  known &  evolutionary
dgorithms.  Among the three maor types of
evolutionary agorithms (genetic agorithms,
evolutionary  programming, and evolution Strategies)

genetic dgorithms are the mostly widdy used. GAs are
most often used for optimization of various systems,
epecidly complex problems such as those involving
manufacturing systems anaysis.

GA AND NATURAL EVOLUTION PROCESS

Genetic  Algorithms  (GAsS) ae search  drategy
which are ale to search very large solution spaces
efficiently by providing a concise computetiona cogt,
since they use probabilistic transaction rules instead of
determinigtic ones. They are easy to implement and are
increesingly used to <solve inherently intractable
problems quickly. Although GAs ae heurigic
procedures themselves, they test a wedth of samplings
from different regions of the search space for fitness
smultaneoudy, and sort out and exploit regions of
interest very quickly [1].

The idea behind genetic agorithm is based on the
natura  evolution phenomena. Rabbits are taken as
exanple a any given time there is a population of
rabbits. Some of them ae faster and smarter than the
other rabbits. These faster, smater rabbits are less
likely to be eaten by foxes, and therefore more of them
survive and meke more rabbits. Of course, some of the
dower, dumber rabbits will survive just because they
are lucky. This surviving population of rabbits sarts
breeding. The breading results in a good mixture of
rabbits genetic materia: some dow rabbits breed with
fast rabbits, some fast with fast, some smart rabbits
with dumb rabbits, and so on. As a reaulting baby
rabbits will (on average) be faster and smarter than
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those in the origind population because more faster,
smarter rabbits survived the foxes. (It is a good thing
tha the foxes ae undergoing a sSmilar process
otherwise the rabbits might become too fast and smart
for the foxes to catch any of them). In the smilar
fashion, in an atificd gendtic dgorithm, a crude
population is refined through a series of generations
while some genetic operators work on the population.

TYPICAL GA PROCEDURE

GAs dart with an initid set of random solutions
cdled the population. There is no dgrict rule to
determine the population size. Population sizes of 100-
200 ae common in GA ressarch. Through the steps
described  below, the population  will  eventudly
converge. Larger population Sze ensures  gredter
diversty but requires more computer resource. Once
the population size is chosen, the initid populaion is
randomly generated.

If the population has 20 strings of 10 hits then
10.20=200 hits must be st to either 0 or 1. The
computer sats the vadue of 200 bit postions with
smulated coin toss. Any string with decimd equivadent
grester  than the maximum limits is discarded and
replaced with another randomly chosen dtring that
meets the congraint. For example, range of a parameter
is from 1000 to 1100 and an individud of the
population is randomly taken as 0111 or 1101, which
fdls outsde the above range. This individua will be
discarded and another individual will be random taken
and checked whether it fals within the range. This
process continues until al the individud of the
population are within the pecific range.

Once the chromosomes are coded as hit strings,
the gendtic dgorithm menipulates these strings using
three genetic operators —reproduction, crossover, and
mutation. The chromosomes are said to evolve through
uccessve generations. In each generation, the fitness
of esch chromosome is evduated, chromosomes with a
higher fitness value are more likely to be selected.

Reproduction takes the current population of bit
drings (that have dready been evauaed and given a
fitness value), makes copies of the strings with better
fitness vadues, and places these drings in a "mding
pool”. The reproduction operator may be implemented
in agorithmic form in different ways. The easest way
is to creste a biased roulette wheed dot sized in
proportion to each current sring in the population.

Another sdection technique is normalized
gomdricsdection  which  is  a ranking sdection
function based on the normdized  geometric
distribution.

After the sdlection, the gtrings are paired up, and a
percentage of the pairs trade parts of ther strings. This
is known as crossover. Different crossover techniques
are used in GA. Simple crossover involves two parents
and crossover points are sdected randomly. If  two
parents to be used for generating new chromosomes are
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Figure 7.2 : Crossover diagram

{Parent1: 01101} and {Parent 2210110}
and if a crossover point is chosen randomly as 4 the
following children will be produced: {Child 1: 0 1 1 0
0} and{Child2: 10111}

Here first four digits of child-1(i.e 0 1 1 Qae
from parent-1 and the rest of the digits (i.e 1) from
paent-2. Smilaly fird 4 digits of child2 ae from
paent-2 and the rest of the digits from parent-1. Fgure
1 is the graphica representation of the crossover
function.

These newly formed strings by crossover operator
ae then subjected to a random screening, where
random bits in random gtrings are picked and modified.
This is known as mutation. Mutation introduces
random variations into the population. It zaps a ‘0’ to a
‘1 and vise versa in a binary gtring. Each bit position
for every member of the populaion is examined. The
computer randomly decides whether mutation should
occur or not. Mutation is usudly performed with low
probability; otherwise it will defeat the order building
being generaed through sdection and  crosover.
Mutation attempts to bump the population gently onto a
dightly better course.

As an example consder a dring as shown in figure
2. Shaded and clear boxes represent two different
options for a hit podtion in a string:’1’ and ‘0’. If the
sxth podtion of the gring is randomly chosen as
mutation point, ‘1’ at that postion will be replaced by
‘0’ by mutation operator.

After this step, the remaining strings form the next
generdion of hit drings They are evduaed, given a
fitness vdue, and agan subjected to reproduction,
crossover, and mutetion. This combined process of
exploiting  knowledge d@out a sech  goace
(reproduction) and exploring a search space (crossover,
mutetion) is wha drives the peformance of a genetic
agorithm. Over time, bad bit srings disgppear from a
population, while good bit strings live on and reproduce
with other good strings to form even better strings.

CODING THE CROMOSOMES

The individuds comprisng the population are
known a chromosomes. In most genetic dgorithm
applications, the chromosomes are coded as a sries of
zeroes and ones, or a binary bit dtring. This usudly
involves discretization of the search space into a certain
number of points that can be represented by a certain
length of bit sring. For binary bit strings, this would
mean that a search space would need to be split into 2
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Figure7.3: Mutation

points, represented by a bit string of length n. For
example a 3 bit string may be maximum binary number
of 3 ones 111. Its decima equivaent is 2%1=7. So the
search space is from 07 (i.e. 000. 001, 010, 011, 100,
101, 110 and 111 in hinary system ). Encoding schemes
transform points in a parameter space into bit string
representation. For example a point (11,6,9) in a three
dimensond parameter gpace can be represented as a
concatenated binary dring, in which each coordinate
vaue is encoded as a gene composed of four binary bits
using binary coding.
101101101001
11 6 9
In process planning parameter optimization where
red vaued varidies ae involved, the vaiables ae
controlled smultaneoudy within their ranges.

PRPBLEM STATEMENT

Rotational parts, which have surfaces symmetric to
the pat axis ae usudly mechined by lathes machine.
Depending on the required surface finish, rough turning
or other finishing operations are required. But initidly
rough turning operation creates the shape of the surface
from the blank by removing a materids and the mgor
part of the machining time is usudly required for rough
turning operation. For this reason cutting parameters
such as feed rate, depth of cut, cutting speed etc. are
optimi zed only for rough turning operation.

Agan, a machine shop may have severd lathes
with different power and rpm. So, it is aso necessary to
identify the machine and rpm tha will require
minimum  time for machining a Secdfic surface
Though totad time includes machinig time, setup time,
gpproach and overtravel of the cutting tool, in most of
the cases, mechining time is responsble for the mgor
pat of total cost. Other cost is not as dgnificant as
machining time. So, in this optimization problem the
cutting parameters are determined by minimizing the
meachining time.

PROBLEM FORMULATION

It is dready mentioned that only cylindricad
surfaces are consdered in this work. These types of
surfaces are machined by turning operation to attain the
required shepe of the surfaces. An example is presented
in figure 4. For a horizontd cylindricd surface
machining time(T,) for turning operation depends on
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Roughtm d ..
Rough turn L $
Semifinish tumn r ...................................
R Y R
Figure 3 Rough turning of a

the total length of the surface () to be machined, feed
rate (f) and rotational speed (N,) of the work piece [3]
i.e mechining timeis:

To= c @
" fON,
If the length of a feature is L and number of passis
Npass then
L= Lf, Npass- o,
L, " n
Tom — @
f° N,

In figure 3 depth of cut, initid radius and fina
radius ae denoted by d, R ad R respectively.
Therefore,

Totd cut =R-R
Samifinish cut = Remeinder of (R-R), d)
Neess= {(R-R)-Remeinder of (R-R), d)}/d ©)

To minimize the rough turning, the materid
removal rate should be as high as possible. As materiad
remova rate is proportional to depth of cut, feed rate
and cutting speed, these parameters should be increased
for a higher materid removd rate But these parameters
canot be increese indefinitdy due to limitation of
maximum dlowable force on the cutting tool and dso
maximum power limit of the machine tool in some
caes. Power (P, and cutting force (FQ can be
cdculated by eguations 4 and 5 [3. These two vaues
ae checked againg their limits (i.e Py, and F )
when depth of cut, feed rate and cutting speed is
optimized.

Power, P=F_," V @

Cutting force, F.=G~ " d” ©)

Hee G a b ae condants. Here V, f and d ae
independent varidbles.

Rough turning operation are usualy performed a
some low cutting speed with high depth of cut and high
feed rate as the metd remova rate is more important
than surface finish.

From the machine daidbase we can collect the
avalable spindle speeds. The effective limits of rpm of

the spinde is chosen according to the following
equation,
Nqrax=Max (available speeds) 6
Nmir=Min (available speeds) @

If the actua rpm of the spindle is N,, can be
cdculated by equation,
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1000° V
T 2 p’R

This rpm is checked againg the limits (Ny, ad
Nimax) during the optimization process.

Asaresult the optimization model becomes

Lf ’ npass
Minimize, T,= ——— ®
f" N,

Subject to
fmin< f< fmax (9)
Vmin <V< Vmax (10)
Orin < A< Gy 17)
F. < Fooy ie G & d<F,, (12)

_ 1000" V
N"rin<N<mex|-e- N"n'n< . - <Nm3x (13)

2’p R

Pn<Pmx i€ G V<P (14)

This is a nonlinear optimization problem where
feed rae, cutting speed and depth of cut ae
independent and red vaued parameters. Limits of these
three parameters depend on the workpiece and tool
materid  combination. Here workpiece and  tool
materids ae Low C free machining sted and uncoated
cabide. The fourth congrant is maximum dlowable
force on cutting tool. Typicd vaues are taken for the
last three condraints i.e. cutting force, rpm and power
of machines. As these parameters are not independent,
penalty method is used [2] to keep them within their
ranges.

PLOTSAND TABLES

Foure 4 shows the changes of the average and best
fitness over the generations. Figures 513 are rdaed to
the parameters at different generation.

RESULT FROM MATLAB PROGRAM

As gated in earlier the first step of GA is to create
an initid population. Individud values for different
parameters in the initid population are chosen within
their ranges a random. Figure 5, 8 and 11 are the initid
values of depth of cut, feed rate and cutting speed. It is
clear from these figures that initid population is spread
over the whole solution space instead of being localized
because initid population is created randomly. This
diversty of the population increeses the region under
search to find the globd optima

From the initial set of data, GA darts to converge
vey quickly by usng some genetic operators such as
reproduction, crossover, and mutation (discussed in
section7.3). Fgure 6, 9 and 12 describe the intermediate
dtuation of the cutting parameters. These parameters
are plotted after running the program for 20 generation.
It is assumed that from the initid random positions the
parameters are moving toward some specific values.
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After 40 generation find vadues of these Figure5: Initial depth of cuts
parameters are plotted in figure 7, 10 and 13. Thexe
three figures demondrate tha when GA reaches to or
qu cloe to Optimum wlu':ionv dl the vaues of a Depth of cut at 15th Generation
specific parameter in the fina population becomes 6 L
smilar. Some exception exist i.e some vadues ae awvay
from the optimum a each generation because GA
checks whether it is proceeding towards a locd optima
or globa by mutation operator.

It is dso clear from figure 4 tha the convergence
rate & an earlier stage is much more higher than that of
the laer dage Average fitness and best fitness vaues
decrease very rapidly in the initid sages [1-20
generation]. As the number of generation increeses, rate
of changes in these two fitness vaues decrease rapidly
and prograns ae 0 designed tha genetic dgorithm
terminates when no dgnificant improvement occurs in T R e
the solution. Usudly maximum number of generation is Sample No
st before the program derts. Almogt dl the individuas Figure 6: Depth of cuts at 20" generation
in a populaion become smilar a the find stage [figure
7,10and 13.

In table 1 comparisons of the parameters are
presented after 40 generation and 100 generation with
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Depth of Cut(mm)
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=
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population size 50 and 100 respectively. It explains the Final Depth of Cut
advantage of high population sze and maximum B
number of generation for the optimization problem. 26l =

Totd mechining time which is the dbjective
function in this minimization problem is improved from 24 o

131 minutes to 114 minutes i.e. dmost 13% over the 60
generation. Here cutting force on the tool, which
reches near the maximum limit (kN) a 40"
generation and same as the maximum limit a the 100"
generation is the main congraint. Due to the lower limit

2.2p

| OO OO OO T T OO T T T

Depth of Cut(mm)
N

1.8f

of cutting force, limit of the machine power becomes 1ep
redundant. l
In this case depth of cut and cutting speed ae o
decreased while feed rate incressed to minimize the e e o = o &
totd machining time. Number of passes is ds Sample No

increased as the depth of cut decreases over the Figure 7: Final depth of cuts(40 generation)
generdion. By gendtic dgorithm the most suitable

mechine is dso sdected for this specific machining

operdtion. Here among three different machines, third

one is sdected because the nearest of the required rpm

isavailablein machine 3.
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Figure 8: Initial feed rates

Feed rates at 20th Generation
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Figure 9: Feed rates at 20" generation
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Figure 10: Final feed rates (40 generation)
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Figure 11: Initid cutting speeds
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Figure 12: Cutting speeds at 20" generation)
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Figure 13: Final cutting Speeds (40 generation)
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Table 8.1: The results after 40 and 100 generation

Parameters After 40 gemeration | After 100 generation
(Populatiom size 50) | (Population size 100)
Depth of cut (mm) 2.0409 1.285
Feed rate (mm/rev) 0.4480 0.751
Cutting speed (m/min) 102.0994 99.353
Cutting force (kN) 1.9995 2.0000
Power (kW) 3.4024 3.7003
Rpm 162.4962 176.6797
Machine 3 3
No. of pass 48 82
Time 131.8657 114
CONCLUSION

Optimization of process parameters is one of the
important task of the CAPP systems. The impact of Al
techniques in CAPP had proven by many research
projects. GA is promoted as one of the promisng Al
techniques to be used for solving nonlinear and
combinatorial  problems involved in process planning.
With the GA-base optimization system developed in
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this work, it would be possble to increase machining
efficiency by using optimal cutting parameters.
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