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Abstract—In CAPP systems process parameter optimization is one of the key areas for 
research and development. Traditional techniques have very limited scope because of the 
complexity of the optimization problem. Due to the rapid development of computer technology 
Genetic Algorithms (GAs), which are robust search algorithm, have been found to be suitable and 
efficient tools for optimization in such cases. In this work process planning parameters for 
machining rotational components are optimized by a Genetic Algorithm Optimization Toolbox 
developed in Matlab environment. Here machining time is considered as the objective function and 
constraints are machine capacity, limits of feed rate, depth of cut, cutting speed etc. Machining 
time is minimized through a series of generations while some genetic operators are applied at each 
generation. The result of the work shows how a complex optimization problem is handle by a 
genetic algorithm and converges very quickly. 
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INTRODUCTION 
 

Optimization of process planning is one of the 
foremost targets of Manufacturing Systems. Numbers 
of research works are performed for generating 
optimum process plan. The optimum process plan may 
be on the basis of time or cost or on the basis of some 
weighted combination of these two. Tool selection, 
machine selection, process selection and tool path 
selection, process parameter selection are the most 
important areas for optimization in process planning. 
Process parameter optimization is the final stage of a 
CAPP system. Determination of optimum parameters is 
one of the vital stages of process planning since the 
economy of machining operation plays the most 
important role in increasing productivity and 
competitiveness. Genetic algorithm is one of the most 
efficient tools for optimization of such problems. This 
paper presents the application of GA in process 
planning parameters optimization. 

 
GA AND OTHER SEARCH ALGORITHMS  

 
Many works have so far been done to optimize 

these parameters by using different optimization 
techniques like goal programming, multistage dynamic 
programming, linear programming, geometric 
programming, branch and bound algorithm etc. But all 
of them face great difficulties when the number of 
variables increases, because the problem becomes 
combinatorially explosive and hence computationally 
complex [1]. Different researchers used different 
techniques to optimize process parameters but all of 
those techniques have their own limitations.  

Direct search methods include function evaluation 
and comparisons only. Gradient search methods need 
values of function and its derivatives, and their 
computerizations are also problematic. They are more 
difficult than the direct search methods, but they can 
yield more accurate for some computational efforts.  

Derivative-based mathematical optimizations are 
not manageable for optimizing functions of discrete 
variables. Dynamic programming that may be applied 
to problems whose solution involves a multistage 
decision process, can handle both continuous and 
discrete variables. Contrary to many other optimization 
methods it can yield a global optimum solution. 
However if the optimization problem involves a large 
number of independent parameters with a wide range of 
values (as in the case of optimization of cutting 
parameters), the use of dynamic programming is 
limited. As the numbers of variables and constraints 
increases, the optimum has a tendency to grow flatter 
with less probability that the realizable optimum will be 
a mathematical optimum, and hence computational 
effort increases considerably.  

Geometric programming is a useful method that 
can be used for solving nonlinear problems subject to 
nonlinear constraints, especially if the objective 
function to be optimized is a polynomial with fractional 
and negative exponents, while the constraints may be 
incorporated in the solution techniques. It is more 
powerful than other mathematical optimization 
techniques when the problem is restricted by one or two 
constraints. However if the degree of difficulty 
increases, the formulated problem might be more 
complicated than the original problem. Geometric 
programming can only handle continuous variables.  
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The solution to the optimization problems, which 
includes real value variables, can be obtained using 
numerous methods. There is no efficient all-purpose 
optimization method available for nonlinear 
programming problems like process parameter 
optimization. The computational time and cost involved 
in the determination of optimal parameters commonly 
depends on the complexity or simplicity of the model. 
Some models can produce accurate solutions by making 
rigorous computation, which is not economic in terms 
of computation time and cost. Sometimes the solution 
from these models may not be optimal. Some other 
models may develop solutions far from the optimum in 
a fast manner. Therefore a compromise between the 
high accuracy of a rigorous solution and low accuracy 
of an oversimplified solution should be made.  

Genetic Algorithms (GAs) are robust search 
algorithms that are based on the mechanics of natural 
selection and natural genetics. They combine the idea 
of "survival of the fittest" with some of the mechanics 
of genetics to form a highly effective search algorithm. 
Genetic algorithms belong to a class of stochastic 
optimization techniques known as evolutionary 
algorithms. Among the three major types of 
evolutionary algorithms (genetic algorithms, 
evolutionary programming, and evolution strategies) 
genetic algorithms are the mostly widely used. GAs are 
most often used for optimization of various systems, 
especially complex problems such as those involving 
manufacturing systems analysis.  
 

GA AND NATURAL EVOLUTION PROCESS 
  

Genetic Algorithms (GAs) are search strategy 
which are able to search very large solution spaces 
efficiently by providing a concise computational cost, 
since they use probabilistic transaction rules instead of 
deterministic ones. They are easy to implement and are 
increasingly used to solve inherently intractable 
problems quickly. Although GAs are heuristic 
procedures themselves, they test a wealth of samplings 
from different regions of the search space for fitness 
simultaneously, and sort out and exploit regions of 
interest very quickly [1]. 

 
 The idea behind genetic algorithm is based on the 

natural evolution phenomena. Rabbits are taken as 
example: at any given time there is a population of 
rabbits. Some of them are faster and smarter than the 
other rabbits. These faster, smarter rabbits are less 
likely to be eaten by foxes, and therefore more of them 
survive and make more rabbits. Of course, some of the 
slower, dumber rabbits will survive just because they 
are lucky. This surviving population of rabbits starts 
breeding. The breeding results in a good mixture of 
rabbits’ genetic material: some slow rabbits breed with 
fast rabbits, some fast with fast, some smart rabbits 
with dumb rabbits, and so on. As a resulting baby 
rabbits will (on average) be faster and smarter than 

those in the original population because more faster, 
smarter rabbits survived the foxes. (It is a good thing 
that the foxe s are undergoing a similar process-
otherwise the rabbits might become too fast and smart 
for the foxes to catch any of them). In the similar 
fashion, in an artificial genetic algorithm, a crude 
population is refined through a series of generations 
while some genetic operators work on the population.  

 
TYPICAL GA PROCEDURE 

 
GAs start with an initial set of random solutions 

called the population. There is no strict rule to 
determine the population size. Population sizes of 100-
200 are common in GA research. Through the steps 
described below, the population will eventually 
converge. Larger population size ensures greater 
diversity but requires more computer resource. Once 
the population size is chosen, the initial population is 
randomly generated. 

If the population has 20 strings of 10 bits then 
10.20=200 bits must be set to either 0 or 1. The 
computer sets the value of 200 bit positions with 
simulated coin toss. Any string with decimal equivalent 
greater than the maximum limits is discarded and 
replaced with another randomly chosen string that 
meets the constraint. For example, range of a parameter 
is from 1000 to 1100 and an individual of the 
population is randomly taken as 0111 or 1101, which 
falls outside the above range. This individual will be 
discarded and another individual will be random taken 
and checked whether it falls within the range. This 
process continues until all the individual of the 
population are within the specific range. 

 Once the chromosomes are coded as bit strings, 
the genetic algorithm manipulates these strings using 
three genetic operators —reproduction, crossover, and 
mutation. The chromosomes are said to evolve through 
successive generations. In each generation, the fitness 
of each chromosome is evaluated; chromosomes with a 
higher fitness value are more likely to be selected. 

Reproduction takes the current population of bit 
strings (that have already been evaluated and given a 
fitness value), makes copies of the strings with better 
fitness values, and places these strings in a "mating 
pool". The reproduction operator may be implemented 
in algorithmic form in different ways. The easiest way 
is to create a biased roulette wheel slot sized in 
proportion to each current string in the population. 
Another selection technique is normalized 
geometricselection which is a ranking selection 
function based on the normalized geometric 
distribution.  

After the selection, the strings are paired up, and a 
percentage of the pairs trade parts of their strings. This 
is known as crossover. Different crossover techniques 
are used in GA. Simple crossover involves two parents 
and crossover points are selected randomly. If two 
parents to be used for generating new chromosomes are 
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{Parent 1: 0 1 1 0 1 } and {Parent 2: 1 0 1 1 0 } 
and if a crossover point is chosen randomly as 4 the 
following children will be produced: {Child 1: 0 1 1 0 
0} and {Child 2: 1 0 1 1 1} 

 Here first four digits of child-1 (i.e. 0 1 1 0) are 
from parent -1 and the rest of the digits (i.e. 1) from 
parent -2. Similarly first 4 digits of child-2 are from 
parent -2 and the rest of the digits from parent-1.  Figure 
1 is the graphical representation of the crossover 
function. 

These newly formed strings by crossover operator 
are then subjected to a random screening, where 
random bits in random strings are picked and modified. 
This is known as mutation. Mutation introduces 
random variations into the population. It zaps a ‘0’ to a 
‘1’ and vise versa in a binary string. Each bit position 
for every member of the population is examined. The 
computer randomly decides whether mutation should 
occur or not. Mutation is usually performed with low 
probability; otherwise it will defeat the order building 
being generated through selection and crossover. 
Mutation attempts to bump the population gently onto a 
slightly better course.  

As an example consider a string as shown in figure 
2. Shaded and clear boxes represent two different 
options for a bit position in a string:’1’ and ‘0’. If the 
sixth position of the string is randomly chosen as 
mutation point, ‘1’ at that position will be replaced by 
‘0’ by mutation operator. 

After this step, the remaining strings form the next 
generation of bit strings. They are evaluated, given a 
fitness value, and again subjected to reproduction, 
crossover, and mutation. This combined process of 
exploiting knowledge about a search space 
(reproduction) and exploring a search space (crossover, 
mutation) is what drives the performance of a genetic 
algorithm. Over time, bad bit strings disappear from a 
population, while good bit strings live on and reproduce 
with other good strings to form even better strings.  

 
CODING THE CROMOSOMES 

 
The individuals comprising the population are 

known as chromosomes. In most genetic algorithm 
applications, the chromosomes are coded as a series of 
zeroes and ones, or a binary bit string. This usually 
involves discretization of the search space into a certain 
number of points that can be represented by a certain 
length of bit string. For binary bit strings, this would 
mean that a search space would need to be split into 2n  

points, represented by a bit string of length n. For 
example a 3 bit string may be maximum binary number 
of 3 ones: 111. Its decimal equivalent is 23-1=7. So the 
search space is from 0-7 (i.e. 000. 001, 010, 011, 100, 
101, 110 and 111 in binary system ). Encoding schemes 
transform points in a parameter space into bit string 
representation. For example a point (11,6,9) in a three 
dimensional parameter space can be represented as a 
concatenated binary string, in which each coordinate 
value is encoded as a gene composed of four binary bits 
using binary coding.  

 
 
 
In process planning parameter optimization where 

real valued variables are involved, the variables are 
controlled simultaneously within their ranges.  

 
PRPBLEM STATEMENT 

 
Rotational parts, which have surfaces symmetric to 

the part axis, are usually machined by lathes machine. 
Depending on the required surface finish, rough turning 
or other finishing operations are required. But initially 
rough turning operation creates the shape of the surface 
from the blank by removing a materials and the major 
part of the machining time is usually required for rough 
turning operation. For this reason cutting parameters 
such as feed rate, depth of cut, cutting speed etc. are 
optimized only for rough turning operation.  

Again, a machine shop may have several lathes 
with different power and rpm. So, it is also necessary to 
identify the machine and rpm that will require 
minimum time for machining a specific surface. 
Though total time includes machinig time, setup time, 
approach and overtravel of the cutting tool, in most of 
the cases, machining time is responsible for the major 
part of total cost. Other cost is not as significant as 
machining time. So, in this optimization problem the 
cutting parameters are determined by minimizing the 
machining time. 

 
PROBLEM FORMULATION 

 
It is already mentioned that only cylindrical 

surfaces are considered in this work. These types of 
surfaces are machined by turning operation to attain the 
required shape of the surfaces. An example is presented 
in figure 4. For a horizontal cylindrical surface 
machining time(Tm) for turning operation depends on

   

Figure 7.2 : Crossover diagram 

Parent 2 

Parent 1 

Child 1 

Child 2 

Crossover point

Figure 7.3 : Mutation  

1     0   0    1     1     1     1     0 

1     0     0     1     1      0    1    0 

1 0 1 1 0 1 1 0 1 0 0 1 
11        6          9 
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the total length of the surface (L) to be machined, feed 
rate (f) and rotational speed (Nw) of the work piece [3] 
i.e. machining time is: 

Tm=
wNf

L
×

   (1) 

If the length of a feature is Lf and number of pass is 
npass then  

L= Lf × npass. So,  

Tm= 
w

passf

Nf

nL

×

×
   (2) 

In figure 3 depth of cut, initial radius and final 
radius are denoted by d, Ri and Rf respectively. 
Therefore,  

Total cut = Ri-Rf 

Semifinish cut = Remainder of ((Ri-Rf), d) 
 npass= {(Ri-Rf)-Remainder of ((Ri-Rf), d)}/d (3) 

To minimize the rough turning, the material 
removal rate should be as high as possible. As material 
removal rate is proportional to depth of cut, feed rate 
and cutting speed, these parameters should be increased 
for a higher material removal rate. But these parameters 
cannot be increase indefinitely due to limitation of 
maximum allowable force on the cutting tool and also 
maximum power limit of the machine tool in some 
cases. Power (P), and cutting force (Fc) can be 
calculated by equations 4 and 5 [3]. These two values 
are checked against their limits (i.e. Pmax and Fmax )  
when depth of cut, feed rate and cutting speed is 
optimized. 

Power, P=Fc×V   (4) 
Cutting force, Fc=Cf ×fa×db  (5) 
Here Cf , a, b are constants. Here V, f and d are 

independent variables.  
Rough turning operation are usually performed at 

some low cutting speed with high depth of cut and high 
feed rate as the metal removal rate is more important 
than surface finish. 

From the machine database we can collect the 
available spindle speeds. The effective limits of rpm of 
the spindle is chosen according to the following 
equation,  

Nmax=Max (available speeds)  (6) 
Nmin=Min (available speeds)  (7) 
If the actual rpm of the spindle is Nw, can be 

calculated by equation, 

Nw= 
R
V

××
×

π2
1000

 

This rpm is checked against the limits (Nmin  and 
Nmax) during the optimization process. 

As a result the optimization model becomes 

Minimize, Tm=  
w

passf

Nf

nL

×

×
  (8) 

Subject to 
 fmin < f < fmax    (9) 
Vmin < V < Vmax    (10) 
dmin < d < dmax    (11) 
Fc < Fmax         i.e. Cf ×fa×db< Fmax (12) 

Nmin<N<Nmax i.e. Nmin<
R

V

××
×

π2

1000
<Nmax (13) 

Pm < Pmax        i.e. Cf ×fa×db×V < Pmax (14) 
 
This is a nonlinear optimization problem where 

feed rate, cutting speed and depth of cut are 
independent and real valued parameters. Limits of these 
three parameters depend on the workpiece and tool 
material combination. Here workpiece and tool 
materials are Low C free machining steel and uncoated 
carbide. The fourth constraint is maximum allowable 
force on cutting tool. Typical values are taken for the 
last three constraints i.e. cutting force, rpm and power 
of machines.  As these parameters are not independent, 
penalty method is used [2] to keep them within their 
ranges.   

 
PLOTS AND TABLES  

 
Figure 4 shows the changes of the average and best 

fitness over the generations. Figures 5-13 are related to 
the parameters at different generation.  

 
RESULT FROM MATLAB PROGRAM 

  
As stated in earlier the first step of GA is to create 

an initial population. Individual values for different 
parameters in the initial population are chosen within 
their ranges at random. Figure 5, 8 and 11 are the initial 
values of depth of cut, feed rate and cutting speed. It is 
clear from these figures that initial population is spread 
over the whole solution space instead of being localized 
because initial population is created randomly. This 
diversity of the population increases the region under 
search to find the global optima.  

From the initial set of data, GA starts to converge 
very quickly by using some genetic operators such as 
reproduction, crossover, and mutation (discussed in 
section7.3). Figure 6, 9 and 12 describe the intermediate 
situation of the cutting parameters. These parameters 
are plotted after running the program for 20 generation. 
It is assumed that from the initial random positions the 
parameters are moving toward some specific values. 

  
 

Rough turn 
pass-1 Rough turn 
pass-2 

Rf Ri 

Figure 3 Rough turning of a 
cylindrical surface 

Semifinish turn 

Depth of cut  

d 

Lf 
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Figure 4: Generation vs. Average and best fitness 

 
After 40 generation final values of these 

parameters are plotted in figure 7, 10 and 13. These 
three figures demonstrate that when GA reaches to or 
very close to optimum solution, all the values of a 
specific parameter in the final population becomes 
similar. Some exception exist i.e. some values are away 
from the optimum at each generation because GA 
checks whether it is proceeding towards a local optima 
or global by mutation operator.  

It is also clear from figure 4 that the convergence 
rate at an earlier stage is much more higher than that of 
the later stage. Average fitness and best fitness values 
decrease very rapidly in the initial stages [1-20 
generation]. As the number of generation increases, rate 
of changes in these two fitness values decrease rapidly 
and programs are so designed that genetic algorithm 
terminates when no significant improvement occurs in 
the solution. Usually maximum number of generation is 
set before the program starts. Almost all the individuals 
in a population become similar at the final stage [figure 
7,10 and 13.  

In table 1 comparisons of the parameters are 
presented after 40 generation and 100 generation with 
population size 50 and 100 respectively. It explains the 
advantage of high population size and maximum 
number of generation for the optimization problem.  

Total machining time, which is the objective 
function in this minimization problem is improved from 
131 minutes to 114 minutes i.e. almost 13% over the 60 
generation. Here cutting force on the tool, which 
reaches near the maximum limit (2kN) at 40th 
generation and same as the maximum limit at the 100 th 
generation is the main constraint. Due to the lower limit 
of cutting force, limit of the machine power becomes 
redundant.  

In this case depth of cut and cutting speed are 
decreased while feed rate increased to minimize the 
total machining time. Number of passes is also 
increased as the depth of cut decreases over the 
generation. By genetic algorithm the most suitable 
machine is also selected for this specific machining 
operation. Here among three different machines, third 
one is selected because the nearest of the required rpm 
is available in machine 3. 
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Figure 5: Initial depth of cuts 
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Figure 6: Depth of cuts at 20th generation 
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Figure 7: Final depth of cuts(40 generation) 
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Figure 8: Initial  feed rates  
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Figure 9: Feed rates at 20th generation 
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Figure 10: Final  feed rates (40 generation) 
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Figure 11: Initial cutting speeds 
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Figure 12: Cutting speeds at 20th generation) 
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Figure 13: Final cutting speeds (40 generation) 
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Table 8.1: The results after 40 and 100 generation 
 

P a r a m e t e r sP a r a m e t e r s   A f t e r  4 0  g e n e r a t i o nA f t e r  4 0  g e n e r a t i o n   
( P o p u l a t i o n  s i z e  5 0 )( P o p u l a t i o n  s i z e  5 0 )   

A f t e r  100  gene ra t i onA f t e r  100  gene ra t i on   
(Popu la t i on  s i ze  100)(Popu la t i on  s i ze  100)   

Depth of cut (mm) 2.0409 1.285 
Feed rate (mm/rev) 0.4480 0.751 
Cutting speed (m/min) 102.0994  99.353 
Cutting force (kN) 1.9995 2.0000 
Power (kW) 3.4024 3.7003 
Rpm  162.4962  176.6797  
Machine 3 3 
No. of pass 48 82 
Time  131.8657  114 

 
 

CONCLUSION 
 

Optimization of process parameters is one of the 
important task of the CAPP systems. The impact of AI 
techniques in CAPP had proven by many research 
projects. GA is promoted as one of the promising AI 
techniques to be used for solving nonlinear and 
combinatorial problems involved in process planning. 
With the GA-base optimization system developed in 

this work, it would be possible to increase machining 
efficiency by using optimal cutting parameters.  
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