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ABSTRACT 

Process selection and sequencing is an important part of a Computer Aided Process 
Planning (CAPP). In the past, traditional computer programs have been used to solve formalized 
problems, where the statements and principles are well understood. But the ill formalized 
problem like process selection in process planning requires knowledge based systems, because a 
productive CAPP system must contain a tremendous amount of knowledge-facts. In this 
research, Artificial Neural Network is used for this classification task for its capability of 
continued learning through out the life of the system and ability to learn arbitrary mappings 
between input and output spaces. Here a cylindrical part features with their attributes are input, 
while the output is the operation(s) required to produce each feature and the sequences of the 
operations. 
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1. INTRODUCTION 

Today, with the rapidly diminishing number of experienced process planners in industry, 
there is an urgent need to automate the process planning functions. The complexity, in addition 
to the variety of the tasks in process planning, requires a significant amount of time from an 
experienced process planner in all most all existing CAPP systems. The successful use of AI in 
many science and engineering areas reveals that AI techniques are applicable to process 
planning. In traditional CAPP systems, manufacturing knowledge is coded line by line in 
program’s statements. Any modification to the facts and rules would cause rewriting of the 
original program. In other words, a traditional CAPP program cannot learn new knowledge 
unless it is explicitly rewritten. This inflexibility of traditional methodology endangers the 
implementation of CAPP systems, which is the important factor in the CAD/CAM linkage. 
Neural Networks, which utilize highly parallel architecture, are found very suitable to overcome 
the limitations of traditional CAPP systems.  

2. LITERATURE REVIEW 

Nafis et al [1] used macros based on decision tree to identify the machining sequence 
required to create a specific feature depending on the attributes of that feature. Decision tree, 
which is efficient for small number of features, attribute and machining operation, must be well 
thought out before such a tool can be used for process planning. Practically a rotational part may 
have many features with numbers of different attributes. This technique becomes redundant 
when a new feature is to be machined. Because the technique cannot take decision beyond the 
logic in the existing decision tree i.e. is unable to update the system for a new feature. This paper 



presents how a neural network based approach can overcome these weaknesses of the traditional 
systems for process selection and sequencing. 

3. ARTIFICIAL NEURAL NETWORK 

Artificial Neural Networks are loosely modeled after human network in the brain and 
sensory areas. The network consists of large number of simple processing units called neuron, 
which communicate in parallel through weighted connections. The neurons are characterized by 
a state of activation, which is a function of the input to the neuron. Many different neural 
network architectures have been developed. These differ in the types of propagation and 
activation functions used, how units are interconnected, and how learning is implemented. The 
type of paradigm used depends on the characteristics of the task to be performed. A major 
distinction among the networks is whether the system will be used for recall (recognition), 
prediction or classification. The perceptron architecture, which is suitable for classification task, 
is used in this work. 

The elements of a neural network in its simple form is shown in figure 1, where a neuron 
with R-element input vectors is transmitted through a connection that multiplies its strength by 
the weight w, to form the product wp. The summation of wp and bias b is the argument to the 
hard limit transfer function f, that produces the output a, where  a=wp+b. 

 
 
 
 
 
 
 
 
 
 

 
Figure 1: A perceptron neuron   Figure 2: Classification of input by neuron  

With hard limit transfer function, perceptron neuron forms two classification regions by 
the decision boundary line L as shown figure 2. This line is perpendicular to the weight matrix 
W and shifted according to bias b. Input vectors above and to the left of the line L will result in a 
net input greater than 0, and therefore, cause the hard limit neuron to output 1. Similarly input 
vector in below and to the right of the line L will cause the neuron to output 0. The dividing line 
can be oriented and moved anywhere to classify the input space as desired by picking the weight 
and bias values. Though hard limit transfer function is mentioned here to explain how neural 
networks work, in this work pure line and sigmoid transfer function are used at the output and 
hidden layer respectively. 

Each neuron calculates three functions:  
• Propagation function ni=Σwij aj + b, where wij is the weight of the connection between 

neuron i and j , ai is the output from neuron i, and b is the bias. 
• Transfer function or activation function 
• Output function 

A 3-layered perceptron architecture as shown in figure 3 is used in this work. The layers 
are organized into a feed forward system, with each layer having full interconnection to the next 
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layer, but no connections within a layer, no feedback connections to the previous layer. The first 
layer is the input layer. The second layer is referred to as a hidden layer, and the final layer is the 
output layer. The response of the network is found at this layer. The input layer activations are 
set equal to the corresponding elements of the input vector. The activations propagate to the 
hidden layer via weighted connections. Then the hidden layer outputs propagate to the output 
layer. The activations of the output layer neurons form the networks response pattern. 

A hidden or output neuron utilizing a threshold function is either entirely deactivated or 
activated, depending on the state of its inputs. Each neuron is capable of deciding between which 
of two different classes its current input belongs to, may be perceived as forming a decision 
hyperplane through the n-dimensional input space. The orientation of this hyperplane depends on 
the value of the connection weights to the unit/neuron. Thus each neuron divides the input space 
into two regions. However many more regions (and much more complex shape) can be 
represented by considering the decisions of all hidden units simultaneously. 

 

 

 

 

 

 

 

Figure 3: Three layered perceptron neural network for process selection 

4. TRAINING OF THE NETWORK 

The usefulness of the network comes from its ability to respond to the input in some 
orderly fashion. For this it is necessary to train the network to respond correctly to a given input. 
Training or knowledge acquisition occurs by modifying the weights of the network. In this work, 
the most widely used learning mechanism for multi-layered perceptron, known as Back 
Propagation (BP) algorithm, is used.  

The problem of finding the best set of weights to minimize error between the expected and 
actual response of a network can be considered as a nonlinear optimization problem. The BP 
algorithm uses an iterative gradient decent heuristic approach. First actual output is compared to 
a desired output for a given input to calculate error terms for each output neuron. The weights 
leading into the hidden nodes are then adjusted by reducing the product of learning rate, error 
term of the output layer and actual activation of hidden neuron. The error terms are then back 
propagated to the hidden layer to calculate the error terms in hidden layer. A momentum term is 
used to increase the rate of convergence by preventing the search from falling into shallow local 
minima during the search process.  

 .                 .                  . 
.                 .                  . 
.                 .                  . 

 

Recurrent inputs  

Input 
layer 

Hidden 
layer 

Output 
layer 

W
ei

gh
te

d 
 c

on
ne

ct
io

ns
 

W
ei

gh
te

d 
 c

on
ne

ct
io

ns
 

 

Rough turning(1) 
Semifinish turning(2) 
Finish turning(3) 
• 
• 
• 
• 
• 
• 
Lapping(10) 

Recurrent input1 
• 
• 

Recurrent input10 
Feature 1 

• 
Feature 4 

 
Attribute1 

• 
Attribute4 

 
 



During the training period, the total network error typically drops quickly due to the initial 
iteration, but easily becomes destabilized when using high learning rates. As the total network 
error converges toward 0, the rate of change in error gradually decreases, but the gradient decent 
search process can tolerate high learning rate before destabilizing. In order to take the advantage 
of this technique, a small acceleration factor was used to accelerate the learning rate from a small 
initial value (.01) to some maximum value (.75) over several thousand of iterations.  

EXAMPLE  

Process planners are interested in those features, which are generated by some sequence of 
machining operation. In this work, rotational parts, as shown in figure 4, with external 
cylindrical surfaces is considered. Each surface or feature is associated with a set of attributes, 
which define it from a manufacturing standpoint. These include dimension, tolerances, surface 
finish, cylindricity, parallelism, perpendicularity, roundness etc. 

Based on the particular values of a feature attribute, the process planner can identify the 
sequence of operations necessary to produce the feature. Each sequence corresponds to a 
particular classification of input pattern. So, process planning task may be represented by the 
transformation: 

  
F A C 

Where: F: A set of part feature 
A: A set of feature attribute 
C: A set of feasible operation sequences 

: A mapping function 
 
The operations required to produce for external cylindrical surfaces are: rough turning, 

semi-finish turning, finish turning, taper turning, chamfering, facing, grinding, lapping. These 
operations are selected according to the requirements of surfaces. Every process has its own 
limitations. For example, a rough turning operation can produce a surface with surface finish 
minimum 7.5µm. Whereas grinding operation can attain surface finish of 1.275µm. So, to make 
a surface with such a fine surface finish, grinding must be the last operation.  

 
 
  
 
 
 
 

 

Figure 4(a): Sample rotational part and    Figure 4(b): 2D profile 

 
To demonstrate the neural network approach, a training set of example is generated for 

external surfaces of various dimensions, tolerances, and surface finishes. Each feature is 
associated with a set of attributes, as shown in table 1. The desired output for each set of data is 
determined by process capability matrix in table 2 and corresponding attributes of that feature 
shown in table1. 
 



Table 1: Some training data with input and output 

 Input Neuron Output Neuron (‘1’ selected and ‘0’ not selected) 
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  1 2 3 4 1 2 3 4 5 6 7 8 9 10 

1 Vertical 2 1 0.005 65 0 0 0 1 0 0 0 0 0 0 

2 Horizontal 1 2 0.0001 4 1 1 1 0 0 0 0 0 1 1 

3 Curved 3 1.7 0.0001 50 0 0 0 0 0 0 1 0 1 0 

4 Horizontal 1 2 0.0001 50 1 1 1 0 1 0 0 0 0 0 

5 Vertical 2 1 0.0001 100 0 0 0 0 0 0 0 0 1 1 

6 Horizontal 1 0.5 0.0001 100 1 1 1 0 0 0 0 0 0 0 

7 Vertical 2 1 0.0001 100 0 0 0 1 0 0 0 0 1 1 

8 Horizontal 1 1 0.0001 50 1 1 0 0 0 0 0 0 0 0 

9 Inclined 3 0.71 0.005 50 0 0 0 0 1 0 0 0 0 0 

10 Vertical 2 0.5 0.005 50 1 0 0 0 0 0 0 0 0 0 

11 Horizontal 1 1 0.0001 4 1 1 1 0 0 0 0 0 1 1 

12 Vertical 2 1 0.007 65 1 0 0 0 0 0 0 0 0 0 

    
 

Table 2: Process capability matrix for surface-making processes 
Parameter Rough 

turning 
Semi-finish 
turning 

Finish 
turning 

Facing Taper 
turning 

Chamferin
g 

Form 
turning 

Grinding Lapping 

Surface finish (µ inch) 250 125 32 32 125 32 32 4 2 

Tolerance. (inch) 0.005 0.001 0.0007 0.0007 0.005 0.0007 0.0007 0.0001 0.0001 

 
The features composing the part being planned are presented to the network one at a time, 

along with their corresponding attributes. The network response to the feature pattern represents 
selections of machining operation to be applied to the feature. Every output neuron corresponds 
to a particular machining operation.  If the activation of the output neuron is positive, it is 
interpreted as meaning that the selection of the machining operation is supported. A threshold 
mechanism selects the operations whose output unit has the highest positive activation above 
some threshold. 

In this work, the input layer consists of 24 units: 4 units corresponding to four types of 
surfaces, 4 unit corresponding to the attributes, and 10 units corresponding to 10 recurrent 
feedback units. The output layer consists of 10 neurons, each corresponding to a particular 
machining operation. The training was performed on a Pentium-I, 233MHz IBM Compatible PC 
using the MATLAB neural network toolbox. The learning rate is 0.15 and momentum constant is 
0.9.  



 

 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 5: Training progress of the network 

5. RESULT 

From figure 5 it is clear that the training process stabilizes after about 100 epochs for the 
training data presented in this example. After the training, some features with their attributes are 
presented to the network. The network identified the required machining operation successfully. 
Though only symmetric cylindrical features are considered in this example, the neural network 
can be easily trained for more complex and nonsymmetrical feature also.  

6. CONCLUSION 

The example demonstrated here shows the potential of the approach for use on real world 
problem like process planning. This approach will contribute significantly for CAPP system and 
seamless integration of CAD/CAM modules in CIM systems. The neural network approach uses 
a single methodology for generating useful inferences, rather than using explicit generalization 
rules. Because the network only generates inferences as needed for a problem, there is no need to 
generate and store all possible inferences ahead of time. 
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